
MCUXSDKUSBSHOSTCOMPUG
MCUXpresso SDK USB Stack Composite Host User's Guide
Rev. 3 — 11 July 2022 User guide

Document information
Information Content

Keywords MCUXSDKUSBSHOSTCOMPUG, USB Stack, Composite Host, USB

Abstract This document describes steps to implement a host that supports multiple
devices based on the MCUXpresso SDK USB stack.

NXP Semiconductors MCUXSDKUSBSHOSTCOMPUG
MCUXpresso SDK USB Stack Composite Host User's Guide

1 Overview

This document describes steps to implement a host that supports multiple devices based
on the MCUXpresso SDK USB stack.

The USB Stack provides one host demo that supports HID mouse + HID keyboard. A
user may need a host to meet its requirements, such as the ability to support different
class devices like supporting an HID and an MSD device simultaneously. This document
provides a step-by-step guide to create a customizable host that supports multiple
devices.

2 Introduction

Unlike the composite device that requires many steps, implementing a host that supports
multiple devices is simple. The event callback function of host and class can handle
attach, enumeration, and detach processing for all the devices. The process flow for this
is shown in Figure 1. This figure shows a host supporting two classes, which is the same
as a host supporting one class. All class-specific functionality for the devices is achieved
in the class-specific task polling in the main function. The user only needs to focus on the
modification of these two points.

Figure 1. Process flow of event callback

3 Detailed steps

Before developing the host that supports multiple devices, the user needs to determine:

1. How many classes this host needs to support.

MCUXSDKUSBSHOSTCOMPUG All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

User guide Rev. 3 — 11 July 2022
2 / 8

NXP Semiconductors MCUXSDKUSBSHOSTCOMPUG
MCUXpresso SDK USB Stack Composite Host User's Guide

2. How many subclasses for every class. For example, the HID class may include HID
mouse and HID keyboard.

The code change for the host that supports HID mouse and HID keyboard is similar to
that of the host supporting CDC virtual com and HID mouse.

3.1 Host event handle function
The USB_HostEvent is a common handle function for attach, unsupported device,
enumeration, and detach event. This function needs to call the class-specific event
handle function. When the host only supports CDC devices, the USB_HostEvent function
is the following:

usb_status_t USB_HostEvent(usb_device_handle deviceHandle,
usb_host_configuration_handle configurationHandle,
uint32_t event_code)
{
usb_status_t status;
status = kStatus_USB_Success;
switch (event_code)
{
case kUSB_HostEventAttach:
status = USB_HostCdcEvent(deviceHandle, configurationHandle, event_code);
/* here add the new device’s event handle function */
break;
case kUSB_HostEventNotSupported:
usb_echo("device not supported.\r\n");
break;
case kUSB_HostEventEnumerationDone:
status = USB_HostCdcEvent(deviceHandle, configurationHandle, event_code);
/* here add the new device’s event handle function */
break;
case kUSB_HostEventDetach:
status = USB_HostCdcEvent(deviceHandle, configurationHandle, event_code);
/* here add the new device’s event handle function */
break;
default:
break;
}
return status;
}

To support other devices, add the corresponding class-specific event handle function.
Additionally, it is necessary to add the local variable to receive the return value of every
event handle function. The return value of USB_HostEvent should be changed according
to the following occasions:

1. kUSB_HostEventAttach: if the return values for all of the class-specific event handle
functions are kUSB_HostEventNotSupported, the return value of USB_HostEvent is
kUSB_HostEventNotSupported.

2. kUSB_HostEventNotSupported: no change.
3. kUSB_HostEventEnumerationDone: if the return values for all of the class-

specific event handle functions are not kStatus_USB_Success, the return value of
USB_HostEvent is kStatus_USB_Error.

4. kUSB_HostEventDetach: if the return values for all of the class-specific event handle
functions are not kStatus_USB_Success, the return value of USB_HostEvent is
kStatus_USB_Error.

MCUXSDKUSBSHOSTCOMPUG All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

User guide Rev. 3 — 11 July 2022
3 / 8

NXP Semiconductors MCUXSDKUSBSHOSTCOMPUG
MCUXpresso SDK USB Stack Composite Host User's Guide

3.2 Class-specific device task
The main function needs to schedule every supported device’s task. If the host only
supports CDC devices, the class-specific task in the main function is as follows:

int main(void)
{
BOARD_InitHardware();
APP_init();
while (1)
{
USB_HostTaskFn(g_hostHandle);
/* cdc class task */
USB_HosCdcTask(&g_cdc);
/* here add the new device’s task */
}
}

4 Host MSD command + CDC virtual com example

This section provides a step-by-step example for how to implement a host that supports
CDC virtual com and MSD command. This example is based on the existing host CDC
virtual com example.

4.1 USB component files
Add the usb_host_msd component files, the usb_host_msd_ufi source file, and
the host_msd_command component files into the current project. Normally, the
host_msd_command component should be in the source folder, shown in Figure 2. The
usb_host_msd component and the usb_host_msd_ufi source file should be located in the
class folder showing in the Figure 3.

Figure 2. Source folder

Figure 3. Class folder

MCUXSDKUSBSHOSTCOMPUG All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

User guide Rev. 3 — 11 July 2022
4 / 8

NXP Semiconductors MCUXSDKUSBSHOSTCOMPUG
MCUXpresso SDK USB Stack Composite Host User's Guide

4.2 USB_HostEvent function
Add the USB_HostMsdEvent function into the USB_HostEvent function.

usb_status_t USB_HostEvent(usb_device_handle deviceHandle,
 usb_host_configuration_handle configurationHandle,
 uint32_t event_code)
{
 usb_status_t status1;
 usb_status_t status2;
 usb_status_t status = kStatus_USB_Success;
 switch (event_code)
 {
 case kUSB_HostEventAttach:
 status1 = USB_HostCdcEvent(deviceHandle, configurationHandle,
 event_code);
 status2 = USB_HostMsdEvent(deviceHandle, configurationHandle,
 event_code);
 if ((status1 == kStatus_USB_NotSupported) && (status2 ==
kStatus_USB_NotSupported))
 {
 status = kStatus_USB_NotSupported;
 }
 break;
 case kUSB_HostEventNotSupported:
 usb_echo("device not supported.\r\n");
 break;
 case kUSB_HostEventEnumerationDone:
 status1 = USB_HostCdcEvent(deviceHandle, configurationHandle,
 event_code);
 status2 = USB_HostMsdEvent(deviceHandle, configurationHandle,
 event_code);
 if ((status1 != kStatus_USB_Success) && (status2 !=
 kStatus_USB_Success))
 {
 status = kStatus_USB_Error;
 }
 break;
 case kUSB_HostEventDetach:
 status1 = USB_HostCdcEvent(deviceHandle, configurationHandle,
 event_code);
 status2 = USB_HostMsdEvent(deviceHandle, configurationHandle,
 event_code);
 if ((status1 != kStatus_USB_Success) && (status2 !=
 kStatus_USB_Success))
 {
 status = kStatus_USB_Error;
 }
 break;
 default:
 break;
 }
 return status;
}

4.3 Main function task
Add the USB_HostMsdTask function into the main function. The modified code should
look like this:

int main(void)
{
 gpio_pin_config_t pinConfig;
 BOARD_InitPins();
 BOARD_BootClockRUN();
 BOARD_InitDebugConsole();
 /* enable usb host vbus */
 pinConfig.pinDirection = kGPIO_DigitalOutput;
 pinConfig.outputLogic = 1U;
 GPIO_PinInit(PTD, 8U, &pinConfig);

MCUXSDKUSBSHOSTCOMPUG All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

User guide Rev. 3 — 11 July 2022
5 / 8

NXP Semiconductors MCUXSDKUSBSHOSTCOMPUG
MCUXpresso SDK USB Stack Composite Host User's Guide

 APP_init();
 while (1)
 {
 USB_HostTaskFn(g_HostHandle);
 /* cdc class task */
 USB_HosCdcTask(&g_cdc);
 /* msd class task */
 USB_HostMsdTask(&g_MsdCommandInstance);
 }
}

5 Revision history

The following table summarizes the changes done to this document since the initial
release.

Revision number Date Substantive changes

0 11/2018 Initial release

1 12/2018 2.4.0 vs 2.5.0

2 05/2020 Updated for MCUXpresso SDK v2.8.0

3 11 July 2022 Editorial and layout updates.

Table 1. Revision history

MCUXSDKUSBSHOSTCOMPUG All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

User guide Rev. 3 — 11 July 2022
6 / 8

NXP Semiconductors MCUXSDKUSBSHOSTCOMPUG
MCUXpresso SDK USB Stack Composite Host User's Guide

6 Legal information

6.1 Definitions
Draft — A draft status on a document indicates that the content is still
under internal review and subject to formal approval, which may result
in modifications or additions. NXP Semiconductors does not give any
representations or warranties as to the accuracy or completeness of
information included in a draft version of a document and shall have no
liability for the consequences of use of such information.

6.2 Disclaimers
Limited warranty and liability — Information in this document is believed
to be accurate and reliable. However, NXP Semiconductors does not give
any representations or warranties, expressed or implied, as to the accuracy
or completeness of such information and shall have no liability for the
consequences of use of such information. NXP Semiconductors takes no
responsibility for the content in this document if provided by an information
source outside of NXP Semiconductors.
In no event shall NXP Semiconductors be liable for any indirect, incidental,
punitive, special or consequential damages (including - without limitation -
lost profits, lost savings, business interruption, costs related to the removal
or replacement of any products or rework charges) whether or not such
damages are based on tort (including negligence), warranty, breach of
contract or any other legal theory.
Notwithstanding any damages that customer might incur for any reason
whatsoever, NXP Semiconductors’ aggregate and cumulative liability
towards customer for the products described herein shall be limited in
accordance with the Terms and conditions of commercial sale of NXP
Semiconductors.

Right to make changes — NXP Semiconductors reserves the right to
make changes to information published in this document, including without
limitation specifications and product descriptions, at any time and without
notice. This document supersedes and replaces all information supplied prior
to the publication hereof.

Suitability for use — NXP Semiconductors products are not designed,
authorized or warranted to be suitable for use in life support, life-critical or
safety-critical systems or equipment, nor in applications where failure or
malfunction of an NXP Semiconductors product can reasonably be expected
to result in personal injury, death or severe property or environmental
damage. NXP Semiconductors and its suppliers accept no liability for
inclusion and/or use of NXP Semiconductors products in such equipment or
applications and therefore such inclusion and/or use is at the customer’s own
risk.

Applications — Applications that are described herein for any of these
products are for illustrative purposes only. NXP Semiconductors makes no
representation or warranty that such applications will be suitable for the
specified use without further testing or modification.
Customers are responsible for the design and operation of their
applications and products using NXP Semiconductors products, and NXP
Semiconductors accepts no liability for any assistance with applications or
customer product design. It is customer’s sole responsibility to determine
whether the NXP Semiconductors product is suitable and fit for the
customer’s applications and products planned, as well as for the planned
application and use of customer’s third party customer(s). Customers should
provide appropriate design and operating safeguards to minimize the risks
associated with their applications and products.
NXP Semiconductors does not accept any liability related to any default,
damage, costs or problem which is based on any weakness or default
in the customer’s applications or products, or the application or use by
customer’s third party customer(s). Customer is responsible for doing all
necessary testing for the customer’s applications and products using NXP
Semiconductors products in order to avoid a default of the applications
and the products or of the application or use by customer’s third party
customer(s). NXP does not accept any liability in this respect.

Terms and conditions of commercial sale — NXP Semiconductors
products are sold subject to the general terms and conditions of commercial
sale, as published at http://www.nxp.com/profile/terms, unless otherwise
agreed in a valid written individual agreement. In case an individual
agreement is concluded only the terms and conditions of the respective
agreement shall apply. NXP Semiconductors hereby expressly objects to
applying the customer’s general terms and conditions with regard to the
purchase of NXP Semiconductors products by customer.

Export control — This document as well as the item(s) described herein
may be subject to export control regulations. Export might require a prior
authorization from competent authorities.

Suitability for use in non-automotive qualified products — Unless
this data sheet expressly states that this specific NXP Semiconductors
product is automotive qualified, the product is not suitable for automotive
use. It is neither qualified nor tested in accordance with automotive testing
or application requirements. NXP Semiconductors accepts no liability for
inclusion and/or use of non-automotive qualified products in automotive
equipment or applications.
In the event that customer uses the product for design-in and use in
automotive applications to automotive specifications and standards,
customer (a) shall use the product without NXP Semiconductors’ warranty
of the product for such automotive applications, use and specifications, and
(b) whenever customer uses the product for automotive applications beyond
NXP Semiconductors’ specifications such use shall be solely at customer’s
own risk, and (c) customer fully indemnifies NXP Semiconductors for any
liability, damages or failed product claims resulting from customer design and
use of the product for automotive applications beyond NXP Semiconductors’
standard warranty and NXP Semiconductors’ product specifications.

Translations — A non-English (translated) version of a document, including
the legal information in that document, is for reference only. The English
version shall prevail in case of any discrepancy between the translated and
English versions.

Security — Customer understands that all NXP products may be subject to
unidentified vulnerabilities or may support established security standards or
specifications with known limitations. Customer is responsible for the design
and operation of its applications and products throughout their lifecycles
to reduce the effect of these vulnerabilities on customer’s applications
and products. Customer’s responsibility also extends to other open and/or
proprietary technologies supported by NXP products for use in customer’s
applications. NXP accepts no liability for any vulnerability. Customer should
regularly check security updates from NXP and follow up appropriately.
Customer shall select products with security features that best meet rules,
regulations, and standards of the intended application and make the
ultimate design decisions regarding its products and is solely responsible
for compliance with all legal, regulatory, and security related requirements
concerning its products, regardless of any information or support that may be
provided by NXP.
NXP has a Product Security Incident Response Team (PSIRT) (reachable
at PSIRT@nxp.com) that manages the investigation, reporting, and solution
release to security vulnerabilities of NXP products.

6.3 Trademarks
Notice: All referenced brands, product names, service names, and
trademarks are the property of their respective owners.
NXP — wordmark and logo are trademarks of NXP B.V.

MCUXSDKUSBSHOSTCOMPUG All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

User guide Rev. 3 — 11 July 2022
7 / 8

mailto:PSIRT@nxp.com

NXP Semiconductors MCUXSDKUSBSHOSTCOMPUG
MCUXpresso SDK USB Stack Composite Host User's Guide

Contents
1 Overview .. 2
2 Introduction ... 2
3 Detailed steps ..2
3.1 Host event handle function3
3.2 Class-specific device task 4
4 Host MSD command + CDC virtual com

example ..4
4.1 USB component files ...4
4.2 USB_HostEvent function 5
4.3 Main function task ... 5
5 Revision history .. 6
6 Legal information ..7

Please be aware that important notices concerning this document and the product(s)
described herein, have been included in section 'Legal information'.

© 2022 NXP B.V. All rights reserved.
For more information, please visit: http://www.nxp.com

Date of release: 11 July 2022
Document identifier: MCUXSDKUSBSHOSTCOMPUG

	1 Overview
	2 Introduction
	3 Detailed steps
	3.1 Host event handle function
	3.2 Class-specific device task

	4 Host MSD command + CDC virtual com example
	4.1 USB component files
	4.2 USB_HostEvent function
	4.3 Main function task

	5 Revision history
	6 Legal information
	Contents

